José Ribamar Smolka Ramos
Telecomunicações
Artigos e Mensagens


ComUnidade WirelessBrasil

Janeiro 2006               Índice Geral


17/01/06

cdma2000 1xEV-DO: Tecnologia, Serviços e Mercado

----- Original Message -----

Sent: Tuesday, January 17, 2006 4:32 PM
Subject: Re: FW: [wireless.br] cdma2000 1xEV-DO: Tecnologia, Serviços e Mercado

 
Para o Evandro e Arakaki

Arakaki escreveu (sobre o artigo "Voice over IP" abaixo transcrito)

(...)  Parece-me que a Rev.A ainda será sobre tecnologia CDMA e não garantirá a redução da latência para 30 ms, necessário para uma conversação agradável por VoIP. Assim, entendo que apenas a Rev.B do 1XEVDO
conseguirá isso, quando então, além de oferecer 74Mbps pro usuário final, a Qualcomm migrará para a tecnologia OFDM...
  (...)

Com absoluta certeza, isto tudo é CDMA2000 (leia-se Qualcomm). A rev.A do EV-DO promete um bocado de coisas com respeito a QoS, que, supostamente, tornaria mais confortável o uso de aplicações multimídia
(VoIP incluso). Mas isto ainda precisa ser provado na prática.

Concordo que, a esta altura, os planos para o EV-DO subiram no telhado, e uma migração direta para OFDM é muito mais provável, mas mesmo com os níveis de latência altos do EV-DO rev.0, e sem garantia de QoS na interface aérea, aplicações VoIP estilo Skype podem muito bem funcionar (e até surprender pela qualidade da voz).

Afirmações do tipo "VoIP só é viável se o atraso máximo for de X ms, com jitter máximo de Y% e perda máxima de Z%" são enganosas, porque o grau de "sobrevivência" da chamada diante de um ambiente de rede
hostil depende diretamente das características da aplicação (sempre é bom lembrar: isto é packet-switching networking, e VoIP é mais uma aplicação - camada 7 do modelo OSI - a ser transportada pela rede).

Se considerarmos o jeito que a voz é "empacotada" em telefones celulares (CDMA ou GSM), minha sensação é que a rede IP subjacente vai ter que ser extremamente superdimensionada (mesmo com todas as features de QoS ativadas), porque esta aplicação, montada em cima de vocoders que comprimem muito, e com quase nada de processamento adicional (afinal, vc está tentando "enfiar" esta aplicação em um handset que, tipicamente, tem um "cérebro" um tanto limitado), acaba ficando extremamente sensível a variações inesperadas nos parâmetros de qualidade da rede (delay, jitter e perda).

O sub-produto desta forma de abordar as aplicações multimídia são exigências tamanhas sobre a rede IP que ela, no final das contas, acabaria sendo apenas uma rede de emulação de circuitos. Só tem um detalhe: o protocolo IP não foi desenhado para isso, e nenhum esquema de QoS vai conseguir reproduzir um ambiente circuit-switching. E se esquemas no nível 2 vem em mente (virtual wires e quetais), pense de novo, porque eles só tem alcance até os limites físicos de implementação de cada sub-rede nível 2. Para seguir adiante o sinal
vai ter de "subir um degrau" e passar por roteadores IP, e vc volta ao ponto inicial: circuit-switching emulation de pé quebrado.

Por outro lado, já vi referências a chamadas usando o soft-phone Skype com qualidade considerada aceitável mesmo quando o delay (unidirecional) excedia 600 ms e a perda de pacotes (perda real ou perda gerada por jitter excessivo) passava de 50%!!!

Então, minha conclusão é:
- existirão usuários de VoIP sobre a estrutura atual de EV-DO rev.0? Sim.
- Eles ficarão satisfeitos com a qualidade das chamadas? Depende do tipo de aplicação VoIP que eles usarem.
- Isto vai melhorar no EV-DO rev.A? Provavelmente sim, mas ainda precisamos ver como as features de QoS na interface aérea irão coexistir e cooperar com as features de QoS da rede IP.

BTW, embora não saiba os detalhes, suspeito que o cenário GSM (aí considerando GPRS, HSDPA e HSUPA) é mais ou menos parecido.
[ ]'s
Smolka
 
-------------------------------------------------------------------
Voice over IP
 
Voice over IP (VoIP) refers to the set of mechanisms that allow the sending of voice communications over a packet-based IP (Internet Protocol) network.  1xEV-DO Rev A introduces new features including end-to-end application-level Quality of Service (QoS) to the wireless network that allow service providers to deliver high quality voice services across their EV-DO infrastructure.

Drivers for VoIP over EV-DO Rev. A
For service operators, there are three primary drivers for VoIP: network efficiency, more efficient use of spectrum and the ability to enhance voice service portfolios.
Network efficiency
Network efficiencies are achieved by using existing resources more efficiently and by consolidating multiple networks, systems, and support organizations. As voice communications move toward digital techniques, the logic of merging separate networks for voice calls and for data sessions is inescapable. Converging the network onto one common, packet-based infrastructure will dramatically reducing the number of systems, employees and facilities required.
Spectrum efficiency
 
Operating parallel voice and data networks is an inefficient use of spectrum - especially in a CDMA environment where 1xRTT and EV-DO technologies use 1.25 megahertz of spectrum for each radio channel.  Using separate radio channels for voice and data prohibits load balancing between the two services, and reduces overall trunking efficiency.  As in the case of wireline networks, a transition to VoIP enables wireless carriers to converge all uses, voice and data and other multimedia, onto the same spectrum, eliminating the need for redundant channels, increasing trunking efficiency, and making better overall use of the spectrum.
Advanced Service Creation
VoIP enables the rapid creation of advanced services. Once carriers have a VoIP network in place they own a rich service creation environment in which new services can be created much more easily than they can be in the MSC-centric architecture of legacy cellular networks. New services beyond the traditional telephone services (call-waiting, multi-party calling, call forwarding, etc.) are possible when voice and data communications travel over the same network.  Examples include push-to-talk, video telephony, click-to-dial, whiteboarding, and advanced accessibility features.
 
1xEV-DO Rev A and VoIP
 
1xEV-DO  Rev A adds several advancements for VoIP and other multimedia traffic.
Increased channel capacity on both the forward and reverse links
 
Compared to EV-DO Rev. 0, EV-DO Rev. A increases the peak forward link data rate to 3.1 Mbps and the peak reverse link data rate to 1.8 Mbps.  The dramatically enhanced uplink data rate will enable Rev. A networks to support significantly more voice connections than is possible under Rev. 0.
QoS support over the air link with multiple flows
The EV-DO forward link uses TDM to send packets to various users, which requires a scheduling function to decide which user should gain access to the air link at any given time.  EV-DO Rev. A has added the ability for the forward link scheduler to coordinate the use of the EV-DO air link with the various devices that will be using it.  Therefore, data devices, which need high data rates but are insensitive to packet delay and jitter, can be handled in one way, while voice devices that need lower data rates but that are highly sensitive to packet delay and jitter will be handled a different way.  On the reverse link EV-DO Rev. A permits the use of higher power for QoS packets in order to reduce the number of transmissions and retries necessary to successfully send these packets.  
Support for short and multi-user packets
 Unlike many data applications, voice applications transmit relatively short packets on a regular basis. In EV-DO Rev. 0, the rigid structure of the physical layer leads to inefficient transmission of these short packets.  EV-DO Rev. A has addressed this problem in two ways.  Unlike Rev. 0, which allows packets sent over the traffic channel to be a minimum of 128 bytes long, Rev. A supports a wide variety of shorter packets, with physical layer packet lengths as low as 16 bytes.  These packets can be transmitted in less time, and allow more users to access the network with low latency.  In addition, EV-DO Rev. A includes support for multi-user packets.  This capability allows a long physical layer packet (with its associated overhead) to be addressed to separate users, again reducing air link overhead as well as per-user delay.
Support for header compression
In current networks the overhead (non-voice information) required to direct traffic from source to destination is typically 40 bytes and results in an inefficient overhead to payload ratio of 2:1. For example, 20 msec of speech from an 8 kbps voice coder is 160 bits, or 20 bytes, while the associated IP, UDP, and RTP headers used for VoIP routing and control are 40 bytes.  Such inefficiency affects the capacity of the network to handle voice traffic. EV-DO Rev. A supports compression of these headers, from 40 bytes down to approximately 2 bytes, thus enabling high VoIP capacity.
 
Enhanced Idle State Protocol support for faster, variable, paging
While a delay of several seconds in connecting to a server is not noticeable with most data applications, real-time applications such as voice are quite different.   Paging channels in digital cellular networks, and EV-DO networks in particular, are logical control channels that allow the devices to receive control messages.  Slow paging channels would manifest themselves as slow setup times, slow reaction to dialed digits, etc. during a voice call. Rev. A has addressed this issue by creating a variable, faster paging cycle.  
Voice over IP is the natural progression for mobile networks as operators begin to expand their deployments of packet data systems.  Airvana is embracing EV-DO Rev. A technology to deliver an end-to-end application-level QoS to the wireless network, enabling service providers to deliver high-quality voice services alongside data and multimedia applications. Airvana is the first company to demonstrate VoIP over EV-DO with QoS.

 


ComUnidade WirelessBrasil                     BLOCO